Reviving the Dynamics of Attacked Reservoir Computers.

阅读:7
作者:Cao Ruizhi, Guan Chun, Gan Zhongxue, Leng Siyang
Physically implemented neural networks are subject to external perturbations and internal variations. Existing works focus on the adversarial attacks but seldom consider attack on the network structure and the corresponding recovery method. Inspired by the biological neural compensation mechanism and the neuromodulation technique in clinical practice, we propose a novel framework of reviving attacked reservoir computers, consisting of several strategies direct at different types of attacks on structure by adjusting only a minor fraction of edges in the reservoir. Numerical experiments demonstrate the efficacy and broad applicability of the framework and reveal inspiring insights into the mechanisms. This work provides a vehicle to improve the robustness of reservoir computers and can be generalized to broader types of neural networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。