Matrine derivate MASM uncovers a novel function for ribosomal protein S5 in osteoclastogenesis and postmenopausal osteoporosis.

阅读:6
作者:Chen Xiao, Zhi Xin, Cao Liehu, Weng Weizong, Pan Panpan, Hu Honggang, Liu Chao, Zhao Qingjie, Zhou Qirong, Cui Jin, Su Jiacan
Postmenopausal osteoporosis (POMP) is a public health problem characterized by decreased bone density and increased fracture risk. Over-activated osteoclastogenesis plays a vital role in POMP. Here we developed a novel bioactive compound MASM (M19) based on sophocarpine. Although it showed no significant effects on osteogenesis and adipogenesis for bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, it could significantly inhibit RANKL/M-CSF induced osteoclastogenesis through suppressing NF-κB, MAPKs and PI3K/Akt pathways in vitro and ameliorate bone loss in ovariectomized mice in vivo. Ribosomal protein s5 (RPS5) has been identified as a target of M19 and regulates PI3K/Akt, NF-κB and MAPKs pathways in osteoclastogenesis. Overexpressions of RPS5 synergistically inhibited osteoclastogenesis with M19 while silencing RPS5 compromised M19 inhibitory effects on osteoclastogenesis in vitro. Among the three pathways, Akt plays a major role in M19 effects. The Akt activator SC(79) partially reversed the inhibitory effects on osteoclastogenesis by M19 and RPS5-knocking-down. It indicates that RPS5 serves as a potential candidate target for inhibiting osteoclastogenesis and osteoporosis therapy and M19 is a promising agent for POMP treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。