Dynamic constitutive identification of concrete based on improved dung beetle algorithm to optimize long short-term memory model.

阅读:3
作者:Li Ping, Zhao Haonan, Gu Jiming, Duan Shiwei
In order to improve the accuracy of concrete dynamic principal identification, a concrete dynamic principal identification model based on Improved Dung Beetle Algorithm (IDBO) optimized Long Short-Term Memory (LSTM) network is proposed. Firstly, the apparent stress-strain curves of concrete containing damage evolution were measured by Split Hopkinson Pressure Bar (SHPB) test to decouple and separate the damage and rheology, and this system was modeled by using LSTM network. Secondly, for the problem of low convergence accuracy and easy to fall into local optimum of Dung Beetle Algorithm (DBO), the greedy lens imaging reverse learning initialization population strategy, the embedded curve adaptive weighting factor and the PID control optimal solution perturbation strategy are introduced, and the superiority of IDBO algorithm is proved through the comparison of optimization test with DBO, Harris Hawk Optimization Algorithm, Gray Wolf Algorithm, and Fruit Fly Algorithm and the combination of LSTM is built to construct the IDBO-LSTM dynamic homeostasis identification model. The final results show that the IDBO-LSTM model can recognize the concrete material damage without considering the damage; in the case of considering the damage, the IDBO-LSTM prediction curves basically match the SHPB test curves, which proves the feasibility and excellence of the proposed method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。