A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices.

阅读:4
作者:Wang Liang, Xia Yang, Lu Yichun
It is hard to forecasting oil future prices accurately, which is affected by some nonlinear, nonstationary, and other chaotic characteristics. Then, a novel GA-SVR-GRNN hybrid deep learning algorithm is put forward for forecasting oil future price. First, a genetic algorithm (GA) is employed for optimizing parameters regarding the support vector regression machine (SVR), and the GA-SVR model is used to forecast oil future price. Further, a generalized regression neural network (GRNN) model is built for the residual series for forecasting. Finally, we obtain the predicted values of the oil future price series forecasted by the GA-SVR-GRNN hybrid deep learning algorithm. According to the simulation, the GA-SVR-GRNN hybrid deep learning algorithm achieves lower MSE, RMSE, MAE, and MAPE relative to the GRNN, GA-SVR, and PSO-SVR models, indicating that the proposed GA-SVR-GRNN hybrid deep learning algorithm can fully reveal the prediction advantages of the GA-SVR and GRNN models in the nonlinear space and is a more accurate and effective method for oil future price forecasting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。