The disk resonator gyroscope is an attractive candidate for high-performance MEMS gyroscopes. This gyroscope consists of a sensor and readout electronics, and the characteristics of the sensor directly determine the performance. For the sensor, a high-quality factor and long decaying time constant are the most important characteristics required to achieve high performance. We report a disk resonator gyroscope with a measured quality factor of 510âk and decaying time constant of 74.9âs, which is a record for MEMS silicon disk resonator gyroscopes, to the best of our knowledge. To improve the quality factor of the DRG, the quality factor improvement mechanism is first analyzed, and based on this mechanism two stiffness-mass decoupled methods, i.e., spoke length distribution optimization and lumped mass configuration design, are proposed and demonstrated. A disk resonator gyroscope prototype is fabricated based on these design strategies, and the sensor itself shows an angle random walk as low as 0.001°/âh, demonstrating true potential to achieve navigation-grade performance. The gyroscope with readout electronics shows an angle random walk of 0.01°/âh and a bias instability of 0.04°/h at room temperature without compensation, revealing that the performance of the gyroscope is severely limited by the readout electronics, which should be further improved. We expect that the quality factor improvement methods can be used in the design of other MEMS gyroscopes and that the newly designed DRG can be further improved to achieve navigation-grade performances for high-end industrial, transportation, aerospace, and automotive applications.
0.04 degree-per-hour MEMS disk resonator gyroscope with high-quality factor (510âk) and long decaying time constant (74.9âs).
阅读:10
作者:Li Qingsong, Xiao Dingbang, Zhou Xin, Xu Yi, Zhuo Ming, Hou Zhanqiang, He Kaixuan, Zhang Yongmeng, Wu Xuezhong
| 期刊: | Microsystems & Nanoengineering | 影响因子: | 9.900 |
| 时间: | 2018 | 起止号: | 2018 Nov 19; 4:32 |
| doi: | 10.1038/s41378-018-0035-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
