Accurate engine gas path component fault diagnosis methods are key to ensuring the reliability and safety of engine operations. At present, the effectiveness of the data-driven gas path component fault diagnosis methods has been widely verified in engineering applications. The deep stack neural network (DSN), as a common deep learning neural network, has been gaining more attention in gas path fault diagnosis studies. However, various gas path component faults with strong coupling effects could occur simultaneously, resulting the DSN method less effective for engine gas path fault diagnosis. In order to improve the prediction performance of the DSN handling multiple gas path component fault diagnosis, a sparse regularization and representation method was proposed. The sparse regularization term is used to expand the traditional deep stacking neural network in the sparse representation, and the predicted output tag is close to the target output tag through this term. The diagnosis performance of six different neural network methods were compared by various engine gas path component fault diagnosis types. The results show that the proposed sparse regularization method significantly improves the prediction performance of the DSN, with an accuracy rate 99.9% under various gas path component fault conditions, which is higher than other methods. The proposed engine gas path component fault diagnosis method can handle multiple coupling gas path faults, and help engine operators to develop maintenance plans for the purpose of engine health management.
Engine gas path component fault diagnosis based on a sparse deep stacking network.
阅读:16
作者:Wang Zepeng, Wang Ye, Wang Xizhen, Zhao Bokun, Zhao Yongjun
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Aug 18; 9(8):e19252 |
| doi: | 10.1016/j.heliyon.2023.e19252 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
