Biological pacing has been proposed as a physiologic counterpart to electronic pacing, and the sinoatrial node (SAN) is the general standard for biological pacemakers. We tested the expression of SAN pacemaker cell activity when implanted autologously in the right ventricle (RV). We induced complete heart block and implanted electronic pacemakers in the RV of adult mongrel dogs. Autologous SAN cells isolated enzymatically were studied by patch clamp to confirm SAN identity. SAN cells (400,000) were injected into the RV subepicardial free wall and dogs were monitored for 2 weeks. Pacemaker function was assessed by overdrive pacing and IV epinephrine challenge. SAN cells expressed a time-dependent inward current (I(f)) activating on hyperpolarization: density = 4.3 ± 0.6 pA/pF at -105 mV. Four of the six dogs demonstrated >50% of beats originating from the implant site at 24 h. Biological pacemaker rates on days 7-14 = 45-55 bpm and post-overdrive escape times = 1.5-2.5 s. Brisk catecholamine responsiveness occurred. Dogs implanted with autologous SAN cells manifest biological pacing properties dissimilar from those of the anatomic SAN. This highlights the importance of cell and substrate interaction in generating biological pacemaker function.
Implantation of sinoatrial node cells into canine right ventricle: biological pacing appears limited by the substrate.
阅读:5
作者:Zhang Hao, Lau David H, Shlapakova Iryna N, Zhao Xin, Danilo Peter, Robinson Richard B, Cohen Ira S, Qu Dan, Xu Zhiyun, Rosen Michael R
| 期刊: | Cell Transplantation | 影响因子: | 3.200 |
| 时间: | 2011 | 起止号: | 2011;20(11-12):1907-14 |
| doi: | 10.3727/096368911X565038 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
