Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe(2)Se(4/3) cubes.

阅读:7
作者:Guo J G, Chen X, Jia X Y, Zhang Q H, Liu N, Lei H C, Li S Y, Gu L, Jin S F, Chen X L
The emergent phenomena such as superconductivity and topological phase transitions can be observed in strict two-dimensional (2D) crystalline matters. Artificial interfaces and one atomic thickness layers are typical 2D materials of this kind. Although having 2D characters, most bulky layered compounds, however, do not possess these striking properties. Here, we report quasi-2D superconductivity in bulky AuTe(2)Se(4/3), where the reduction in dimensionality is achieved through inducing the elongated covalent Te-Te bonds. The atomic-resolution images reveal that the Au, Te, and Se are atomically ordered in a cube, among which are Te-Te bonds of 3.18 and 3.28 à . The superconductivity at 2.85 K is discovered, which is unraveled to be the quasi-2D nature owing to the Berezinsky-Kosterlitz-Thouless topological transition. The nesting of nearly parallel Fermi sheets could give rise to strong electron-phonon coupling. It is proposed that further depleting the thickness could result in more topologically-related phenomena.Emergent phenomena often appear in crystals in the two-dimensional limit but are rare in bulky compounds. Here, Guo et al. report a quasi-two-dimensional superconductivity in a bulk material AuTe(2)Se(4/3) at 2.85 K, potentially owing to a topological transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。