Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis

识别调节分支形态发生的机械化学检查点和负反馈回路

阅读:7
作者:William P Daley, Kathryn M Gulfo, Sharon J Sequeira, Melinda Larsen

Abstract

Cleft formation is the initial step in submandibular salivary gland (SMG) branching morphogenesis, and may result from localized actomyosin-mediated cellular contraction. Since ROCK regulates cytoskeletal contraction, we investigated the effects of ROCK inhibition on mouse SMG ex vivo organ cultures. Pharmacological inhibitors of ROCK, isoform-specific ROCK I but not ROCK II siRNAs, as well as inhibitors of myosin II activity stalled clefts at initiation. This finding implies the existence of a mechanochemical checkpoint regulating the transition of initiated clefts into progression-competent clefts. Downstream of the checkpoint, clefts are rendered competent through localized assembly of fibronectin promoted by ROCK I/myosin II. Cleft progression is primarily mediated by ROCK I/myosin II-stimulated cell proliferation with a contribution from cellular contraction. Furthermore, we demonstrate that FN assembly itself promotes epithelial proliferation and cleft progression in a ROCK-dependent manner. ROCK also stimulates a proliferation-independent negative feedback loop to prevent further cleft initiations. These results reveal that cleft initiation and progression are two physically and biochemically distinct processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。