Alphabet Handwriting Recognition: From Wood-Framed Hydrogel Arrays Design to Machine Learning Decoding.

阅读:5
作者:Yan Guihua, Hu Xichen, Miao Ziyue, Liu Yongde, Zeng Xianhai, Lin Lu, Ikkala Olli, Peng Bo
Handwriting recognition is a highly integrated system, demanding hardware to collect handwriting signals and software to deal with input data. Nonetheless, the design of such a system from scratch with sustainable materials and an easily accessible computing network presents significant challenges. In pursuit of this goal, a flexible, and electrically conductive wood-derived hydrogel array is developed as a handwriting input panel, enabling recognizing alphabet handwriting assisted by machine learning technique. For this, lignin extraction-refill, polypyrrole coating, and polyacrylic acid filling, endowing flexibility, and electrical conduction to wood are sequentially implemented. Subsequently, these woods are manufactured into a 5 × 5 array, creating a matrix of signals upon handwriting. Efficient handwritten recognition is then achieved through appropriate manual feature extraction and algorithms with low complexity within a computing network, as demonstrated in this work, the strategic choice of expertise-based feature engineering and simplified algorithms effectively boost the overall model performance on handwriting recognition. With potential adaptability, further applications in customized wearable devices and hands-on healthcare appliances are envisioned.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。