PURPOSE: Reliable and accurate predictive models are necessary to drive the success of radiomics. Our aim was to identify the optimal radiomics-based machine learning method for isocitrate dehydrogenase (IDH) genotype prediction in diffuse gliomas. METHODS: Eight classical machine learning methods were evaluated in terms of their stability and performance for pre-operative IDH genotype prediction. A total of 126 patients were enrolled for analysis. Overall, 704 radiomic features extracted from the pre-operative MRI images were analyzed. The patients were randomly assigned to either the training set or the validation set at a ratio of 2:1. Feature selection and classification model training were done using the training set, whereas the predictive performance and stability of the model were independently assessed using the validation set. RESULTS: Random Forest (RF) showed high predictive performance (accuracy 0.885 ± 0.041, AUC 0.931 ± 0.036), whereas neural network (NN) (accuracy 0.829 ± 0.064, AUC 0.878 ± 0.052) and flexible discriminant analysis (FDA) (accuracy 0.851 ± 0.049, AUC 0.875 ± 0.057) displayed low predictive performance. With regard to stability, RF also showed high robustness against data perturbation (relative standard deviations, RSD 3.87%). CONCLUSIONS: RF is a promising machine learning method in predicting IDH genotype. Development of an accurate and reliable model can assist in the initial diagnostic evaluation and treatment planning for diffuse glioma patients.
Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas.
阅读:4
作者:Wu Shuang, Meng Jin, Yu Qi, Li Ping, Fu Shen
| 期刊: | Journal of Cancer Research and Clinical Oncology | 影响因子: | 2.800 |
| 时间: | 2019 | 起止号: | 2019 Mar;145(3):543-550 |
| doi: | 10.1007/s00432-018-2787-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
