THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the "dual attenuation dilemma" comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group's advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic-electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna-lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330-500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity-distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication's viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity.
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals.
阅读:5
作者:Yu Jianjun, Chen Jiali
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 20; 16(7):828 |
| doi: | 10.3390/mi16070828 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
