Unveiling Dynamic System Strategies for Multisensory Processing: From Neuronal Fixed-Criterion Integration to Population Bayesian Inference.

阅读:5
作者:Zhang Jiawei, Gu Yong, Chen Aihua, Yu Yuguo
Multisensory processing is of vital importance for survival in the external world. Brain circuits can both integrate and separate visual and vestibular senses to infer self-motion and the motion of other objects. However, it is largely debated how multisensory brain regions process such multisensory information and whether they follow the Bayesian strategy in this process. Here, we combined macaque physiological recordings in the dorsal medial superior temporal area (MST-d) with modeling of synaptically coupled multilayer continuous attractor neural networks (CANNs) to study the underlying neuronal circuit mechanisms. In contrast to previous theoretical studies that focused on unisensory direction preference, our analysis showed that synaptic coupling induced cooperation and competition in the multisensory circuit and caused single MST-d neurons to switch between sensory integration or separation modes based on the fixed-criterion causal strategy, which is determined by the synaptic coupling strength. Furthermore, the prior of sensory reliability was represented by pooling diversified criteria at the MST-d population level, and the Bayesian strategy was achieved in downstream neurons whose causal inference flexibly changed with the prior. The CANN model also showed that synaptic input balance is the dynamic origin of neuronal direction preference formation and further explained the misalignment between direction preference and inference observed in previous studies. This work provides a computational framework for a new brain-inspired algorithm underlying multisensory computation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。