Unveiling Dynamic System Strategies for Multisensory Processing: From Neuronal Fixed-Criterion Integration to Population Bayesian Inference.

阅读:7
作者:Zhang Jiawei, Gu Yong, Chen Aihua, Yu Yuguo
Multisensory processing is of vital importance for survival in the external world. Brain circuits can both integrate and separate visual and vestibular senses to infer self-motion and the motion of other objects. However, it is largely debated how multisensory brain regions process such multisensory information and whether they follow the Bayesian strategy in this process. Here, we combined macaque physiological recordings in the dorsal medial superior temporal area (MST-d) with modeling of synaptically coupled multilayer continuous attractor neural networks (CANNs) to study the underlying neuronal circuit mechanisms. In contrast to previous theoretical studies that focused on unisensory direction preference, our analysis showed that synaptic coupling induced cooperation and competition in the multisensory circuit and caused single MST-d neurons to switch between sensory integration or separation modes based on the fixed-criterion causal strategy, which is determined by the synaptic coupling strength. Furthermore, the prior of sensory reliability was represented by pooling diversified criteria at the MST-d population level, and the Bayesian strategy was achieved in downstream neurons whose causal inference flexibly changed with the prior. The CANN model also showed that synaptic input balance is the dynamic origin of neuronal direction preference formation and further explained the misalignment between direction preference and inference observed in previous studies. This work provides a computational framework for a new brain-inspired algorithm underlying multisensory computation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。