Conventional etchants for multi-metal/alloy stacked structures often suffer from nonuniform etching, residual layers, or undercutting, failing to meet high-generation production standards. This study presents a stable copper-molybdenum (Cu-Mo) etchant with extended bath life for thin film transistor liquid crystal display (TFT-LCD) applications, achieved through compositional optimization. Systematic investigations have been conducted on the effects of etching time, copper ion (Cu(2+)) loading (bath life) and storage time on the etch performance, alongside evaluations of sudden-eruption point and material compatibility. Results demonstrate that over-etching beyond the "detected endpoint" by 10% to 90% maintains critical dimension (CD) bias and taper angle of MoNiTi(MTD)/Cu/MTD three-layer and Cu/MTD two-layer within process specifications, as well as the difference between the CD bias of the three-layer and two-layer structures at the same over-etch time. The optimized formulation exhibits a 20% broader process window and 20% longer bath life compared to the process-of-record (POR) etchant. Shelf stability exceeds 15 days with minimal performance degradation, while maintaining compatibility with industrial equipment materials. These advancements address key challenges in high-precision etching for advanced TFT-LCD manufacturing, providing a scalable solution for next-generation display production.
A Copper-Molybdenum Etchant with Wide Process Window, Long Bath Life and High Stability for Thin Film Transistor Liquid Crystal Display Applications.
阅读:4
作者:Zhang Bing, Yang Yafen, Zhang David Wei
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 18(8):1795 |
| doi: | 10.3390/ma18081795 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
