Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy.

阅读:3
作者:Jiang Wenjun, Chen Jiyuan, Gong Chunai, Wang Yuanyuan, Gao Yuan, Yuan Yongfang
BACKGROUND: Enzalutamide (Enz) has shown limited bioavailability via oral administration. Castration-resistant prostate cancer (CRPC) is frequent among patients receiving 18-24 months of androgen deprivation therapy. The nonsteroidal anti-androgen enzalutamide (Enz) used in the treatment of prostate cancer has shown limited bioavailability via oral administration. Therefore, we developed a multifunctional enzalutamide-loaded graphene oxide nanosystem (TP-GQDss/Enz) for CRPC intravenous treatment, with high drug loading efficiency. METHODS: Aminated graphene quantum dots (GQDs) were first cross-linked via disulfide bonds into a graphene quantum dot derivative of approximately 200 nm (GQDss), which was further functionalized with a tumour-targeting peptide and PEG to form TP-GQDss. Enz was loaded into TP-GQDss for in vitro and in vivo study. RESULTS: The results showed that high drug-loading efficiency was achieved by TP-GQDss via π-π electron interaction. TP-GQDss could be rapidly internalized by CRPC cells via endocytosis. Moreover, Enz in TP-GQDss could inhibit the growth of C4-2B and LNCaP prostate cancer cell lines in vitro. Further, TP-GQDss exhibited an enhanced cancer-targeting ability and alleviated the side effects of Enz in vivo. CONCLUSIONS: The multifunctional nanocarrier constructed here could accomplish controlled Enz release and serve as an intravenous therapy platform for CRPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。