A novel mode of histone-like protein HupB regulating Sinorhizobium meliloti cell division through lysine acetylation.

阅读:4
作者:Li Ningning, Jin Huibo, Li Hongbo, Yu Huilin, Wu Xiaoxu, Zhang Tianci, Yu Liangliang, Qin Zhaoling, Luo Li
HU, a small, basic histone-like protein, binds to bacterial genomic DNA, influencing DNA conformation, replication, and transcription. Its acetylation is a key post-translational modification affecting its DNA-binding activity. The role of HU acetylation in regulating cell division through the cell cycle regulatory system remained largely unknown. In this study, we find that stimulation of lysine acetylation or non-acetylation in HupB, a homolog of HU, differentially regulates the expression of cell cycle regulators, as well as cell growth and division in Sinorhizobium meliloti. Lys3, Lys13, and Lys83 in HupB were identified as acetylated residues by mass spectrometry. Mutating these residues to arginine (stimulating non-acetylation) in HupB impedes normal cell division, while substituting them with glycine (mimicking acetylation) allows for rapid cell duplication. The mimicry of non-acetylated HupB leads to enlarged abnormal cells, while stimulating acetylated HupB only reduces cell length. Transcription activation was observed in the mutant cells. Cell cycle regulators such as CtrA, GcrA and DnaA were differentially expressed in the mutants. HupB substitutions differentially bound to these cell cycle regulatory genes. These findings suggest that the appropriate acetylation of HupB regulates the expression of cell cycle regulators, thereby controlling S. meliloti cell division.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。