With the rapid advances in single-cell sequencing technology, it is now feasible to conduct in-depth genetic analysis in individual cells. Study on the dynamics of single cells in response to perturbations is of great significance for understanding the functions and behaviors of living organisms. However, the acquisition of post-perturbation cellular states via biological experiments is frequently cost-prohibitive. Predicting the single-cell perturbation responses poses a critical challenge in the field of computational biology. In this work, we propose a novel deep learning method called coupled variational autoencoders (CoupleVAE), devised to predict the postperturbation single-cell RNA-Seq data. CoupleVAE is composed of two coupled VAEs connected by a coupler, initially extracting latent features for controlled and perturbed cells via two encoders, subsequently engaging in mutual translation within the latent space through two nonlinear mappings via a coupler, and ultimately generating controlled and perturbed data by two separate decoders to process the encoded and translated features. CoupleVAE facilitates a more intricate state transformation of single cells within the latent space. Experiments in three real datasets on infection, stimulation and cross-species prediction show that CoupleVAE surpasses the existing comparative models in effectively predicting single-cell RNA-seq data for perturbed cells, achieving superior accuracy.
CoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data.
阅读:8
作者:Wu Yahao, Liu Jing, Xiao Yanni, Zhang Shuqin, Li Limin
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 26(2):bbaf126 |
| doi: | 10.1093/bib/bbaf126 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
