Liquid-nano-liquid interface-oriented anisotropic encapsulation.

阅读:9
作者:Zhan Yating, Huang Xirui, Liu Minchao, Lin Runfeng, Yu Hongyue, Kou Yufang, Xing Enyun, Elzatahry Ahmed A, Mady Mohamed F, Zhao Dongyuan, Zhao Tiancong, Li Xiaomin
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids. Specifically, functional nanoparticles such as magnetic nanoparticles, lanthanide fluorescent nanoparticles, and Au nanorods were anisotropically encapsulated by mesoporous polydopamine (mPDA). In this emulsion system, the wetting behavior of functional nanoparticles at the water/oil interface could be manipulated by the stabilizer of the emulsion (surfactant), leading to the anisotropic assembly of mPDA shell and resulting in various nanostructures, including core-shell, yolk-shell with small opening, ball-in-bowl, and multipetal structures. Due to their structural asymmetry, inherent magnetic properties, and photothermal properties, the ball-in-bowl structured Fe(3)O(4)@SiO(2)&mPDA nanohybrids, serving as proof of concept for nanomotors, demonstrated effective penetration of bacterial biofilm and promotion of infected wound healing. Overall, our approach offers a different perspective for designing morphologically controllable asymmetric structures based on liquid-nano-liquid interface in microemulsion systems that hold great potential for establishing innovative functional nanomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。