Multi-robot systems are significant in decision-making capabilities and applications, but avoiding collisions during movement remains a critical challenge. Existing decentralized obstacle avoidance strategies, while low in computational cost, often fail to ensure safety effectively. To address this issue, this paper leverages graph neural networks (GNNs) and deep reinforcement learning (DRL) to aggregate high-dimensional features as inputs for reinforcement learning (RL) to generate paths. Additionally, it introduces safety constraints through an artificial potential field (APF) to optimize these trajectories. Additionally, a constrained nonlinear optimization method further refines the APF-adjusted paths, resulting in the development of the GNN-RL-APF-Lagrangian algorithm. By combining APF and nonlinear optimization techniques, experimental results demonstrate that this method significantly enhances the safety and obstacle avoidance capabilities of multi-robot systems in complex environments. The proposed GNN-RL-APF-Lagrangian algorithm achieves a 96.43% success rate in sparse obstacle environments and 89.77% in dense obstacle scenarios, representing improvements of 59% and 60%, respectively, over baseline GNN-RL approaches. The method maintains scalability up to 30 robots while preserving distributed execution properties.
Decentralized Multi-Robot Navigation Based on Deep Reinforcement Learning and Trajectory Optimization.
阅读:13
作者:Bi Yifei, Luo Jianing, Zhu Jiwei, Liu Junxiu, Li Wei
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 4; 10(6):366 |
| doi: | 10.3390/biomimetics10060366 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
