The abundance of genotype data generated by individual and international efforts carries the promise of revolutionizing disease studies and the association of phenotypes with individual polymorphisms. A key challenge is providing an accurate resolution (phasing) of the genotypes into haplotypes. We present here results on a method for genotype phasing in the presence of recombination. Our analysis is based on a stochastic model for recombination-poor regions ("blocks"), in which haplotypes are generated from a small number of core haplotypes, allowing for mutations, rare recombinations, and errors. We formulate genotype resolution and block partitioning as a maximum-likelihood problem and solve it by an expectation-maximization algorithm. The algorithm was implemented in a software package called GERBIL (genotype resolution and block identification using likelihood), which is efficient and simple to use. We tested GERBIL on four large-scale sets of genotypes. It outperformed two state-of-the-art phasing algorithms. The phase algorithm was slightly more accurate than GERBIL when allowed to run with default parameters, but required two orders of magnitude more time. When using comparable running times, GERBIL was consistently more accurate. For data sets with hundreds of genotypes, the time required by phase becomes prohibitive. We conclude that GERBIL has a clear advantage for studies that include many hundreds of genotypes and, in particular, for large-scale disease studies.
GERBIL: Genotype resolution and block identification using likelihood.
阅读:3
作者:Kimmel Gad, Shamir Ron
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2005 | 起止号: | 2005 Jan 4; 102(1):158-62 |
| doi: | 10.1073/pnas.0404730102 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
