An efficient dual-branch framework via implicit self-texture enhancement for arbitrary-scale histopathology image super-resolution.

阅读:3
作者:Duan Minghong, Qu Linhao, Yang Zhiwei, Wang Manning, Zhang Chenxi, Song Zhijian
High-quality whole-slide scanning is expensive, complex, and time-consuming, thus limiting the acquisition and utilization of high-resolution histopathology images in daily clinical work. Deep learning-based single-image super-resolution (SISR) techniques provide an effective way to solve this problem. However, the existing SISR models applied in histopathology images can only work in fixed integer scaling factors, decreasing their applicability. Though methods based on implicit neural representation (INR) have shown promising results in arbitrary-scale super-resolution (SR) of natural images, applying them directly to histopathology images is inadequate because they have unique fine-grained image textures different from natural images. Thus, we propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale SR of histopathology images to address this challenge. The proposed ISTE contains a feature aggregation branch and a texture learning branch. We employ the feature aggregation branch to enhance the learning of the local details for SR images while utilizing the texture learning branch to enhance the learning of high-frequency texture details. Then, we design a two-stage texture enhancement strategy to fuse the features from the two branches to obtain the SR images. Experiments on publicly available datasets, including TMA, HistoSR, and the TCGA lung cancer datasets, demonstrate that ISTE outperforms existing fixed-scale and arbitrary-scale SR algorithms across various scaling factors. Additionally, extensive experiments have shown that the histopathology images reconstructed by the proposed ISTE are applicable to downstream pathology image analysis tasks.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。