The integration of in vitro biological neural networks (BNNs) with robotic systems to explore their information processing and adaptive learning in practical tasks has gained significant attention in the fields of neuroscience and robotics. However, existing BNN-based robotic systems cannot perceive the visual environment due to the inefficiency of sensory information encoding methods. In this study, we propose a biomimetic visual information spatiotemporal encoding method based on improved delayed phase encoding. This method transforms high-dimensional images into a series of pulse sequences through convolution, temporal delay, alignment, and compression for BNN stimuli. We conduct three stages of unsupervised training on in vitro BNNs using high-density microelectrode arrays (HD-MEAs) to validate the potential of the proposed encoding method for image recognition tasks. The neural activity is decoded via a logistic regression model. The experimental results show that the firing patterns of BNNs with different spatiotemporal stimuli are highly separable in the feature space. After the third training stage, the image recognition accuracy reaches 80.33% ± 7.94%, which is 13.64% higher than that of the first training stage. Meanwhile, the BNNs exhibit significant increases in the connection number, connection strength, and inter-module participation coefficient after unsupervised training. These results demonstrate that the proposed method significantly enhances the functional connectivity and cross-module information exchange in BNNs.
Biomimetic Visual Information Spatiotemporal Encoding Method for In Vitro Biological Neural Networks.
阅读:8
作者:Wang Xingchen, Lv Bo, Tang Fengzhen, Wang Yukai, Liu Bin, Liu Lianqing
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 10(6):359 |
| doi: | 10.3390/biomimetics10060359 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
