The integration of in vitro biological neural networks (BNNs) with robotic systems to explore their information processing and adaptive learning in practical tasks has gained significant attention in the fields of neuroscience and robotics. However, existing BNN-based robotic systems cannot perceive the visual environment due to the inefficiency of sensory information encoding methods. In this study, we propose a biomimetic visual information spatiotemporal encoding method based on improved delayed phase encoding. This method transforms high-dimensional images into a series of pulse sequences through convolution, temporal delay, alignment, and compression for BNN stimuli. We conduct three stages of unsupervised training on in vitro BNNs using high-density microelectrode arrays (HD-MEAs) to validate the potential of the proposed encoding method for image recognition tasks. The neural activity is decoded via a logistic regression model. The experimental results show that the firing patterns of BNNs with different spatiotemporal stimuli are highly separable in the feature space. After the third training stage, the image recognition accuracy reaches 80.33% ± 7.94%, which is 13.64% higher than that of the first training stage. Meanwhile, the BNNs exhibit significant increases in the connection number, connection strength, and inter-module participation coefficient after unsupervised training. These results demonstrate that the proposed method significantly enhances the functional connectivity and cross-module information exchange in BNNs.
Biomimetic Visual Information Spatiotemporal Encoding Method for In Vitro Biological Neural Networks.
阅读:3
作者:Wang Xingchen, Lv Bo, Tang Fengzhen, Wang Yukai, Liu Bin, Liu Lianqing
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 10(6):359 |
| doi: | 10.3390/biomimetics10060359 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
