Sepsis-induced liver injury (SILI) is a serious complication of septicemia and contributes to high rates of patient death. SILI is characterized by excessive hepatic reactive oxygen species (ROS) generation, leading to inflammatory response activation and the release of inflammatory mediators that yield liver damage. Efforts to design drugs that can mitigate oxidative stress and inflammatory factor production are thus vital to protecting patients against SILI. Nevertheless, effective pharmacological interventions for SILI therapy are currently absent. Here, natural superoxide dismutase (SOD)-mimetic carbon dots (G-CDs), derived from the traditional medicine plant Glycyrrhiza, with robust ROS-scavenging activity were designed and synthesized as a novel treatment for SILI. These G-CDs possess abundant surface hydroxyl and carbonyl groups such that they can effectively mediate SOD-like enzyme activity exceeding 13,340 U/mg to alleviate ROS overproduction and associated inflammation. In a murine model of lipopolysaccharide-induced SILI, these G-CDs effectively reduced hepatic inflammation, oxidative injury, and tissue damage. From a mechanistic perspective, these G-CDs were found to preserve liver integrity through the activation of Keap1/Nrf2-mediated antioxidant signaling and the inhibition of NF-κB-dependent inflammation, thereby reducing the levels of hepatic inflammation and oxidative stress. In summary, these results highlight the promise of G-CDs as therapeutic candidates capable of treating SILI by mitigating oxidative stress-associated liver injury.
Targeting Reactive Oxygen Species and Inflammation in Sepsis-Induced Liver Injury with Naturally Derived Superoxide Dismutase-Mimicking Carbon Dots.
阅读:6
作者:Zhong Chonglei, Song Nannan, Huang Ping, Han Liwen, Zhang Jiguo, Lu Zhiyuan, Wang Lei
| 期刊: | Biomaterials Research | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Sep 5; 29:0249 |
| doi: | 10.34133/bmr.0249 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
