Cryoelectron tomography (cryo-ET) and subtomogram averaging (STA) allow direct visualization and structural studies of biological macromolecules in their native cellular environment, in situ. Often, low signal-to-noise ratios in tomograms, low particle abundance within the cell, and low throughput in typical cryo-ET workflows severely limit the obtainable structural information. To help mitigate these limitations, here we apply a compressed sensing approach using 3D second-order total variation (CS-TV(2)) to tomographic reconstruction. We show that CS-TV(2) increases the signal-to-noise ratio in tomograms, enhancing direct visualization of macromolecules, while preserving high-resolution information up to the secondary structure level. We show that, particularly with small datasets, CS-TV(2) allows improvement of the resolution of STA maps. We further demonstrate that the CS-TV(2) algorithm is applicable to cellular specimens, leading to increased visibility of molecular detail within tomograms. This work highlights the potential of compressed sensing-based reconstruction algorithms for cryo-ET and in situ structural biology.
Compressed sensing for electron cryotomography and high-resolution subtomogram averaging of biological specimens.
阅读:3
作者:Böhning Jan, Bharat Tanmay A M, Collins Sean M
| 期刊: | Structure | 影响因子: | 4.300 |
| 时间: | 2022 | 起止号: | 2022 Mar 3; 30(3):408-417 |
| doi: | 10.1016/j.str.2021.12.010 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
