Stir-baked Xanthii fructus ameliorates adjuvant arthritis by regulating gut microbiota, short-chain fatty acids and metabolites.

阅读:8
作者:Cui Xinyuan, Ding Zhaoqi, Ji Yujie, Liu Jiale, Chang Zenghui, Zhang Junshuo, Wang Xinyi, Liu Kai, Liu Yuanyuan
INTRODUCTION: Rheumatoid arthritis (RA) is a common and widespread autoimmune disease whose incidence is increasing. Stir-baked Xanthii fructus (XF) is used to treat RA in clinic. However, it's in vivo efficacy and mechanistic pathways remain unclear. This study aimed to explored XF's therapeutic effects and its mechanisms by comprehensive serum metabolomics and gut microbiota analysis. METHODS: The components in XF were identified using the UPLC-MS technique. A rat model of adjuvant arthritis was established using complete Freund's adjuvant to evaluate the efficacy of XF. The in vivo mechanisms were explored through microbiome, short-chain fatty acid (SCFAs), and metabolomics analysis. RESULTS: In total, 27 components were identified in XF. The treatment effectively suppressed inflammatory factors and alleviated pannus and cartilage damage. In addition, this article revealed a substantial remodeling of the gut microbiota composition, characterized by a reduced abundance of pro-inflammatory bacteria, increased populations of immunomodulatory bacteria and restored levels of SCFAs. Serum metabolomic profiling identified 17 arthritis-associated metabolites, primarily involved in glycerophospholipid metabolism and bile acid biosynthesis. Then, a strong correlation was found between gut microbiota and serum metabolites, indicating that XF exerts its therapeutic effects through immunomodulation, energy homeostasis regulation, and redox balance maintenance via the gut-joint axis. DISCUSSION: This study provides new insights for further research into the targeted therapy of XF to ameliorate adjuvant arthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。