Metaheuristic optimization algorithms manage the search process to explore search domains efficiently and are used efficiently in large-scale, complex problems. Transient Search Algorithm (TSO) is a recently proposed physics-based metaheuristic method inspired by the transient behavior of switched electrical circuits containing storage elements such as inductance and capacitance. TSO is still a new metaheuristic method; it tends to get stuck with local optimal solutions and offers solutions with low precision and a sluggish convergence rate. In order to improve the performance of metaheuristic methods, different approaches can be integrated and methods can be hybridized to achieve faster convergence with high accuracy by balancing the exploitation and exploration stages. Chaotic maps are effectively used to improve the performance of metaheuristic methods by escaping the local optimum and increasing the convergence rate. In this study, chaotic maps are included in the TSO search process to improve performance and accelerate global convergence. In order to prevent the slow convergence rate and the classical TSO algorithm from getting stuck in local solutions, 10 different chaotic maps that generate chaotic values instead of random values in TSO processes are proposed for the first time. Thus, ergodicity and non-repeatability are improved, and convergence speed and accuracy are increased. The performance of Chaotic Transient Search Algorithm (CTSO) in global optimization was investigated using the IEEE Congress on Evolutionary Computation (CEC)'17 benchmarking functions. Its performance in real-world engineering problems was investigated for speed reducer, tension compression spring, welded beam design, pressure vessel, and three-bar truss design problems. In addition, the performance of CTSO as a feature selection method was evaluated on 10 different University of California, Irvine (UCI) standard datasets. The results of the simulation showed that Gaussian and Sinusoidal maps in most of the comparison functions, Sinusoidal map in most of the real-world engineering problems, and finally the generally proposed CTSOs in feature selection outperform standard TSO and other competitive metaheuristic methods. Real application results demonstrate that the suggested approach is more effective than standard TSO.
A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection.
阅读:3
作者:Altay Osman, Varol Altay Elif
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2023 | 起止号: | 2023 Aug 22; 9:e1526 |
| doi: | 10.7717/peerj-cs.1526 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
