LogSum + L(2) penalized logistic regression model for biomarker selection and cancer classification.

阅读:5
作者:Liu Xiao-Ying, Wu Sheng-Bing, Zeng Wen-Quan, Yuan Zhan-Jiang, Xu Hong-Bo
Biomarker selection and cancer classification play an important role in knowledge discovery using genomic data. Successful identification of gene biomarkers and biological pathways can significantly improve the accuracy of diagnosis and help machine learning models have better performance on classification of different types of cancer. In this paper, we proposed a LogSum + L(2) penalized logistic regression model, and furthermore used a coordinate decent algorithm to solve it. The results of simulations and real experiments indicate that the proposed method is highly competitive among several state-of-the-art methods. Our proposed model achieves the excellent performance in group feature selection and classification problems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。