This paper proposes a new meta-heuristic algorithm, named wild geese migration optimization (GMO) algorithm. It is inspired by the social behavior of wild geese swarming in nature. They maintain a special formation for long-distance migration in small groups for survival and reproduction. The mathematical model is established based on these social behaviors to solve optimization problems. Meanwhile, the performance of the GMO algorithm is tested on the stable benchmark function of CEC2017, and its potential for dealing with practical problems is studied in five engineering design problems and the inverse kinematics solution of robot. The test results show that the GMO algorithm has excellent computational performance compared to other algorithms. The practical application results show that the GMO algorithm has strong applicability, more accurate optimization results, and more competitiveness in challenging problems with unknown search space, compared with well-known algorithms in the literature. The proposal of GMO algorithm enriches the team of swarm intelligence optimization algorithms and also provides a new solution for solving engineering design problems and inverse kinematics of robots.
Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot.
阅读:4
作者:Wu Honggang, Zhang Xinming, Song Linsen, Zhang Yufei, Gu Lidong, Zhao Xiaonan
| 期刊: | Computational Intelligence and Neuroscience | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Sep 27; 2022:5191758 |
| doi: | 10.1155/2022/5191758 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
