BACKGROUND: Gene interaction networks are graphs in which nodes represent genes and edges represent functional interactions between them. These interactions can be at multiple levels, for instance, gene regulation, protein-protein interaction, or metabolic pathways. To analyse gene interaction networks at a large scale, gene co-expression network analysis is often applied on high-throughput gene expression data such as RNA sequencing data. With the advance in sequencing technology, expression of genes can be measured in individual cells. Single-cell RNA sequencing (scRNAseq) provides insights of cellular development, differentiation and characteristics at the transcriptomic level. High sparsity and high-dimensional data structures pose challenges in scRNAseq data analysis. RESULTS: In this study, a sparse inverse covariance matrix estimation framework for scRNAseq data is developed to capture direct functional interactions between genes. Comparative analyses highlight high performance and fast computation of Stein-type shrinkage in high-dimensional data using simulated scRNAseq data. Data transformation approaches also show improvement in performance of shrinkage methods in non-Gaussian distributed data. Zero-inflated modelling of scRNAseq data based on a negative binomial distribution enhances shrinkage performance in zero-inflated data without interference on non zero-inflated count data. CONCLUSION: The proposed framework broadens application of graphical model in scRNAseq analysis with flexibility in sparsity of count data resulting from dropout events, high performance, and fast computational time. Implementation of the framework is in a reproducible Snakemake workflow https://github.com/calathea24/ZINBGraphicalModel and R package ZINBStein https://github.com/calathea24/ZINBStein .
Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data.
阅读:6
作者:Vo Duong H T, Thorne Thomas
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2024 | 起止号: | 2024 Oct 26; 25(1):339 |
| doi: | 10.1186/s12859-024-05946-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
