Variation in drug response results from a combination of factors that include differences in gender, ethnicity, and environment, as well as genetic variation that may result in differences in mRNA and protein expression. This article presents two integrative analytic approaches that make use of both genome-wide SNP and mRNA expression data available on the same set of subjects: a step-wise integrative approach and a comprehensive analysis using sparse canonical correlation analysis (SCCA). In addition to applying standard SCCA, we present a novel modification of SCCA which allows different weighting for the various pair-wise relationships in the SCCA. These integrative approaches are illustrated with both simulated data and data from a pharmacogenomic study of the drug gemcitabine. Results from these analyses found little overlap in terms of genes detected, possibly detecting different biological mechanisms. In addition, we found the proposed weighted SCCA to outperform its unweighted counterpart in detecting associations between the genomic features and phenotype. Further research is needed to develop and assess new integrative methods for pharmacogenomic studies, as these types of analyses may uncover novel insights into the relationship between genomic variation and drug response.
Simultaneous analysis of multiple data types in pharmacogenomic studies using weighted sparse canonical correlation analysis.
阅读:3
作者:Chalise Prabhakar, Batzler Anthony, Abo Ryan, Wang Liewei, Fridley Brooke L
| 期刊: | Omics-A Journal of Integrative Biology | 影响因子: | 1.600 |
| 时间: | 2012 | 起止号: | 2012 Jul-Aug;16(7-8):363-73 |
| doi: | 10.1089/omi.2011.0126 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
