SARS-CoV-2 is under strong evolutionary selection to acquire mutations in its spike protein that reduce neutralization by human polyclonal antibodies. Here we use pseudovirus-based deep mutational scanning to measure how mutations to the spike from the recent KP.3.1.1 SARS-CoV-2 strain affect cell entry, binding to ACE2 receptor, RBD up/down motion, and neutralization by human sera and clinically relevant antibodies. The spike mutations that most affect serum antibody neutralization sometimes differ between sera collected before versus after recent vaccination or infection, indicating these exposures shift the neutralization immunodominance hierarchy. The sites where mutations cause the greatest reduction in neutralization by post-vaccination or infection sera include receptor-binding domain (RBD) sites 475, 478 and 487, all of which have mutated in recent SARS-CoV-2 variants. Multiple mutations outside the RBD affect sera neutralization as strongly as any RBD mutations by modulating RBD up/down movement. Some sites that affect RBD up/down movement have mutated in recent SARS-CoV-2 variants. Finally, we measure how spike mutations affect neutralization by three clinically relevant SARS-CoV-2 antibodies: VYD222, BD55-1205, and SA55. Overall, these results illuminate the current constraints and pressures shaping SARS-CoV-2 evolution, and can help with efforts to forecast possible future antigenic changes that may impact vaccines or clinical antibodies.
Spike mutations that affect the function and antigenicity of recent KP.3.1.1-like SARS-CoV-2 variants.
阅读:7
作者:Dadonaite Bernadeta, Harari Sheri, Larsen Brendan B, Kampman Lucas, Harteloo Alex, Elias-Warren Anna, Chu Helen Y, Bloom Jesse D
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 19 |
| doi: | 10.1101/2025.08.18.671001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
