Ovarian aging results in decreased fertility and endocrine function. In mice, caloric restriction (CR) maintains ovarian function. In this study, we determined whether CR also has a beneficial effect on reproductive longevity in the nonhuman primate (NHP). Ovaries were collected from young (10-13 years) and old (19-26 years) rhesus macaques who were either on a diet of moderate caloric restriction or a control diet for three years. To test the effect of CR on follicle number, follicles were analyzed in histological sections from animals across experimental cohorts: Young Control, Young CR, Old Control, Old CR (n = 4-8/group). In control animals, there was an age-dependent decrease in follicle numbers across all follicle stages (P < 0.05). Although there was no effect of diet on total follicle number, the follicle distribution in the Old CR cohort more closely resembled that of young animals. The subset of Old CR animals that were still cycling, albeit irregularly, had more primordial follicles than controls (P < 0.05). Assessment of collagen and hyaluronic acid matrices revealed that CR attenuated age-related changes to the ovarian microenvironment. Overall, CR may improve aspects of reproductive longevity in the NHP, but the timing of when it occurs during the reproductive lifespan is likely critical.
Short-term moderate caloric restriction in the rhesus macaque attenuates markers of ovarian aging in select populations.
阅读:19
作者:Gargus Emma S, Sharma Rhea, Gu Rebecca, Mulcahy Camille, Johnson Brian W, Song Jing, Lee Jungwha, Zelinski Mary, Duncan Francesca E
| 期刊: | Aging-Us | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 20; 17(5):1164-1189 |
| doi: | 10.18632/aging.206253 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
