Robust Gaussian Process Regression Method for Efficient Tunneling Pathway Optimization: Application to Surface Processes.

阅读:4
作者:Fang Wei, Zhu Yu-Cheng, Cheng Yihan, Hao Yi-Ping, Richardson Jeremy O
Simulation of surface processes is a key part of computational chemistry that offers atomic-scale insights into mechanisms of heterogeneous catalysis, diffusion dynamics, and quantum tunneling phenomena. The most common theoretical approaches involve optimization of reaction pathways, including semiclassical tunneling pathways (called instantons). The computational effort can be demanding, especially for instanton optimizations with an ab initio electronic structure. Recently, machine learning has been applied to accelerate reaction-pathway optimization, showing great potential for a wide range of applications. However, previous methods still suffer from numerical and efficiency issues and were not designed for condensed-phase reactions. We propose an improved framework based on Gaussian process regression for general transformed coordinates, which has improved efficiency and numerical stability, and we propose a descriptor that combines internal and Cartesian coordinates suitable for modeling surface processes. We demonstrate with 11 instanton optimizations in three representative systems that the improved approach makes ab initio instanton optimization significantly cheaper, such that it becomes not much more expensive than a classical transition-state theory rate calculation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。