In this study, we introduce the Channa Argus Optimizer (CAO), a novel swarm-based meta-heuristic algorithm that draws inspiration from the distinctive hunting and escaping behavior observed in Channa Arguses in the natural world. The CAO algorithm mainly emulates the hunting and escaping behavior of Chinna Argus to realize a tradeoff between exploitation and exploration in the solution space and discourage premature convergence. The competitiveness and effectiveness of CAO are validated utilizing 29 typical CEC2017 and 10 CEC2020 unconstrained benchmarks and 5 real-world constrained optimization mechanical engineering issues. The CAO algorithm was tested on CEC2017 and CEC2020 functions and compared with 7 algorithms to evaluate performance. In addition, the CAO algorithm is tested on the CEC2017 benchmark functions with dimensions of 10-D, 30-D, 50-D, and 100-D. It is then compared and evaluated against other algorithms, using the Wilcoxon rank-sum test and Friedman mean rank. Finally, the CAO algorithm is utilized to tackle five intricate engineering problems to show its robustness. These results have demonstrated the effectiveness and potential of the CAO algorithm, yielding outstanding results and ranking first among other algorithms.
Channa argus optimizer for solving numerical optimization and engineering problems.
阅读:3
作者:Fang Da, Yan Jun, Zhou Quan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):21502 |
| doi: | 10.1038/s41598-025-08517-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
