Hybrid artificial electric field employing cuckoo search algorithm with refraction learning for engineering optimization problems.

阅读:4
作者:Adegboye Oluwatayomi Rereloluwa, Deniz Ülker Ezgi
Due to its low dependency on the control parameters and straightforward operations, the Artificial Electric Field Algorithm (AEFA) has drawn much interest; yet, it still has slow convergence and low solution precision. In this research, a hybrid Artificial Electric Field Employing Cuckoo Search Algorithm with Refraction Learning (AEFA-CSR) is suggested as a better version of the AEFA to address the aforementioned issues. The Cuckoo Search (CS) method is added to the algorithm to boost convergence and diversity which may improve global exploration. Refraction learning (RL) is utilized to enhance the lead agent which can help it to advance toward the global optimum and improve local exploitation potential with each iteration. Tests are run on 20 benchmark functions to gauge the proposed algorithm's efficiency. In order to compare it with the other well-studied metaheuristic algorithms, Wilcoxon rank-sum tests and Friedman tests with 5% significance level are used. In order to evaluate the algorithm's efficiency and usability, some significant tests are carried out. As a result, the overall effectiveness of the algorithm with different dimensions and populations varied between 61.53 and 90.0% by overcoming all the compared algorithms. Regarding the promising results, a set of engineering problems are investigated for a further validation of our methodology. The results proved that AEFA-CSR is a solid optimizer with its satisfactory performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。