BACKGROUND: Arterial bypass graft implantation remains the primary therapy for patients with advanced cardiovascular disease; however, there is no available synthetic small-diameter vascular graft. METHODS: Tissue-engineered vessels were grown from human smooth muscle cells that were seeded on a biodegradable scaffold using a biomimetic perfusion system. The human tissue-engineered vessels (hTEV) were decellularized by a two-step process using a combination of detergents and hypertonic solutions. The mechanical characteristics were assessed by suture retention strength and burst pressure. The decellularized hTEV were implanted as aortic interpositional grafts in nude rats to evaluate in vivo performance as an arterial graft over a 6-week period. RESULTS: The human tissue-engineered structure formed a vessel composed of smooth muscle cells and the extracellular matrix proteins, including collagen. After decellularization, the collagen matrix remained intact while the cellular components were removed. The mechanical strength of the hTEV after decellularization was similar to human vein in vitro, with a burst pressure of 1,567 ± 384 mm Hg (n = 3) versus 1,680 ± 307 mm Hg for human saphenous vein. The hTEVs had a high patency rate (four of five grafts) without evidence of rupture or aneurysm over a 6-week period as an aortic interpositional graft in a nude rat model. Histologic analysis showed a thin neointima with a confluent endothelium and a subendothelial layer of smooth muscle cells on the explanted tissue-engineered vessels. Transmission electron microscopy on the explanted tissue demonstrated elastin formation in the neointima and intact residual collagen fibers from the tissue-engineered vessel. CONCLUSIONS: The hTEV had a high patency rate and remained mechanically stable as an aortic interpositional graft in a nude rat. The vessel supported the growth of a neointima with endothelial cells and smooth muscle cells. The host remodeling suggested the engineered matrix had a positive effect to create a regenerated vascular graft.
Allogeneic human tissue-engineered blood vessel.
阅读:7
作者:Quint Clay, Arief Melissa, Muto Akihito, Dardik Alan, Niklason Laura E
| 期刊: | Journal of Vascular Surgery | 影响因子: | 3.600 |
| 时间: | 2012 | 起止号: | 2012 Mar;55(3):790-8 |
| doi: | 10.1016/j.jvs.2011.07.098 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
