Barium titanate and lithium niobate permittivity and Pockels coefficients from megahertz to sub-terahertz frequencies.

阅读:4
作者:Chelladurai Daniel, Kohli Manuel, Winiger Joel, Moor David, Messner Andreas, Fedoryshyn Yuriy, Eleraky Mohammed, Liu Yuqi, Wang Hua, Leuthold Juerg
The Pockels effect is essential for controlling optical signals at the highest speeds, particularly for electro-optic modulators in photonic integrated circuits. Lithium niobate (LN) and barium titanate (BTO) are two excellent Pockels materials to this end. Here we measure the Pockels coefficients and permittivity in LN and BTO over a continuous frequency range from 100 MHz to 330 GHz. These properties are constant across this frequency range in LN, but have a strong frequency dependence in BTO. Still, our measurements show that BTO has remarkable electro-optic properties compared with LN. Furthermore, we show how BTO devices can be designed with a flat electro-optic frequency response despite the Pockels coefficient dispersion. Finally, we expound our method for broadband characterization of these vital electro-optic properties, utilizing specialized integrated electro-optic phase shifters. Altogether, this work empowers the design of high-speed BTO devices and the development of new electro-optic materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。