OBJECTIVE: Ferlins are known to regulate plasma membrane repair in muscle cells and are linked to muscular dystrophy and cardiomyopathy. Recently, using proteomic analysis of caveolae/lipid rafts, we reported that endothelial cells (EC) express myoferlin and that it regulates membrane expression of vascular endothelial growth factor receptor 2 (VEGFR-2). The goal of this study was to document the presence of other ferlins in EC. METHODS AND RESULTS: EC expressed another ferlin, dysferlin, and that in contrast to myoferlin, it did not regulate VEGFR-2 expression levels or downstream signaling (nitric oxide and Erk1/2 phosphorylation). Instead, loss of dysferlin in subconfluent EC resulted in deficient adhesion followed by growth arrest, an effect not observed in confluent EC. In vivo, dysferlin was also detected in intact and diseased blood vessels of rodent and human origin, and angiogenic challenge of dysferlin-null mice resulted in impaired angiogenic response compared with control mice. Mechanistically, loss of dysferlin in cultured EC caused polyubiquitination and proteasomal degradation of platelet endothelial cellular adhesion molecule-1 (PECAM-1/CD31), an adhesion molecule essential for angiogenesis. In addition, adenovirus-mediated gene transfer of PECAM-1 rescued the abnormal adhesion of EC caused by dysferlin gene silencing. CONCLUSIONS: Our data describe a novel pathway for PECAM-1 regulation and broaden the functional scope of ferlins in angiogenesis and specialized ferlin-selective protein cargo trafficking in vascular settings.
A new role for the muscle repair protein dysferlin in endothelial cell adhesion and angiogenesis.
阅读:3
作者:Sharma Arpeeta, Yu Carol, Leung Cleo, Trane Andy, Lau Marco, Utokaparch Soraya, Shaheen Furquan, Sheibani Nader, Bernatchez Pascal
| 期刊: | Arteriosclerosis Thrombosis and Vascular Biology | 影响因子: | 7.400 |
| 时间: | 2010 | 起止号: | 2010 Nov;30(11):2196-204 |
| doi: | 10.1161/ATVBAHA.110.208108 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
