BACKGROUND: Energy consumption predictions for smart homes and cities benefit many from homeowners to energy suppliers, allowing homeowners to understand and manage their future energy consumption, improve energy efficiency, and reduce energy costs. Predictions can help energy suppliers effectively distribute energy on demand. Therefore, from the past to the present, numerous methods have been conducted using collected data, employing both statistical and artificial intelligence (AI)-based approaches, to achieve successful energy consumption predictions. METHODS: This study proposes a deep learning-based novel ensemble (DLBNE) method with the best score transferred-adaptive neuro fuzzy inference system (BST-ANFIS) as a high-performance and robust approach for energy consumption prediction. The proposed method uses deep learning (DL)-based algorithms, including convolutional neural networks (CNN), recurrent neural networks (RNN), long short-term memory (LSTM), bidirectional long short-term memory (BI-LSTM), and gated recurrent units (GRUs) as base predictors. The BST-ANFIS architecture combines the individual outcomes of these predictors. In order to build a robust and dynamic prediction model, the interaction between the base predictors and the ANFIS architecture is achieved using a best score transfer approach. The performance of the proposed method in energy consumption prediction was verified through five DL methods, five machine learning (ML) methods, and a DL-based weighted average (DLBWA) ensemble method. RESULTS: In experimental studies, the results were obtained from three-stage analyses: fold, average, and periodic performance analyses. In fold analyses, the proposed method, in terms of the root mean square error (RMSE) metric, demonstrated better performance in four folds on the Internet of Things (IoT)-based smart home (IBSH) dataset, two in the homestead city electricity consumption (HCEC) dataset, and two in the individual household power consumption (IHPC) dataset compared to the other methods. In the average performance analyses, it showed significantly higher performance than the other methods in all metrics for the IBSH and IHPC datasets, and in metrics except the mean absolute error (MAE) metric for the HCEC dataset. The performance results in terms of RMSE, MAE, mean square error (MSE), and mean absolute percentage error (MAPE) metrics from these analyses were obtained as 0.001531, 0.001010, 0.0000031, and 0.001573 for the IBSH dataset; 0.025208, 0.005889, 0.001884, and 0.000137 for the HCEC dataset; and 0.013640, 0.006572, 0.000356, and 0.000943 for the IHPC dataset, respectively. The results of the 120-h periodic analyses also showed that the proposed method yielded a better prediction result than the other methods. Furthermore, a comparison of the proposed method with similar studies in the literature revealed that it demonstrated competitive performance in relation to the methods employed in those studies.
Deep learning-based novel ensemble method with best score transferred-adaptive neuro fuzzy inference system for energy consumption prediction.
阅读:6
作者:DaÄkurs Birce, Atacak İsmail
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 21; 11:e2680 |
| doi: | 10.7717/peerj-cs.2680 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
