In today's banking and financial system, using a credit card has become indispensable. The credit card industry has existed due to a shift in consumer preferences and a rise in national economic growth. The number of issuing banks, card issuers, and transaction volumes has increased significantly. Nevertheless, owing to the growth in the number of transactions made with credit cards, both the total amount due and the rate of defaults on credit card loans have become issues that cannot be neglected. This issue must be resolved to ensure the continued and prosperous growth of the banking industry in the years to come. Currently, a few optimization algorithms-Whale optimization algorithm (WOA), Harmony Search (HS), Multi-verse optimization (MVO), and Vortex Search (VS)-have been used to achieve this purpose. However, because credit card default data is volatile and unequal, it is challenging for typical optimization algorithms to offer steady approaches with optimal performance. Studies have indicated that optimizing algorithms with suitable properties can significantly improve performance. To improve performance, some tuning was applied to the ANN. This study will assess twenty-three parameters, and the efficacy of all four approaches will be compared using ROC and AUC evaluations. The suggested model's performance is contrasted with a scenario where the classifiers were trained using original data. In contrast, the AUC values for VS-MLP were 0.7407 and 0.7271, while those for HS-MLP were 0.7074 and 0.6997. In the training and testing phases, AUC values of 0.7469 and 0.7329 from MVO-MLP and 0.72 and 0.7185 from WOA-MLP, respectively. The results show that the training accuracy of HS, VSA, MVO, and WOA are similar; MVO has the highest training accuracy. The credit card industry can benefit significantly from this methodology, which may help resolve default probabilities.
Novel embedding model predicting the credit card's default using neural network optimized by harmony search algorithm and vortex search algorithm.
阅读:6
作者:Xu Tianpei, Qu Min
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Apr 23; 10(9):e30134 |
| doi: | 10.1016/j.heliyon.2024.e30134 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
