This paper proposes a non-contact palm vein image segmentation model that integrates multiscale convolution and Swin-Transformer. Based on an enhanced U-Net architecture, the downsampling path employs a multiscale convolution module to extract hierarchical features, while the upsampling path captures global vein distribution through a sliding window attention mechanism. A feature fusion module suppresses background interference by integrating cross-layer information. Experimental results demonstrate that the model achieves 97.8% accuracy and 94.5% Dice coefficient on the PolyU and CASIA datasets, with a 3.2% improvement over U-Net. Ablation studies validate the synergistic effectiveness of the proposed modules. The model effectively enhances the robustness of palm vein recognition in complex illumination and noisy environments.
A novel approach to palm vein image segmentation combining multi-scale convolution and swin-transformer networks.
阅读:6
作者:Sheng Wenshun, Zheng Ziling, Zhu Hanzhi
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 20; 15(1):17539 |
| doi: | 10.1038/s41598-025-02757-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
