The Orai1 inhibitor BTP2 has multiple effects on Ca2+ handling in skeletal muscle.

阅读:7
作者:Meizoso-Huesca Aldo, Launikonis Bradley S
BTP2 is an inhibitor of the Ca2+ channel Orai1, which mediates store-operated Ca2+ entry (SOCE). Despite having been extensively used in skeletal muscle, the effects of this inhibitor on Ca2+ handling in muscle cells have not been described. To address this question, we used intra- and extracellular application of BTP2 in mechanically skinned fibers and developed a localized modulator application approach, which provided in-preparation reference and test fiber sections to enhance detection of the effect of Ca2+ handling modulators. In addition to blocking Orai1-dependent SOCE, we found a BTP2-dependent inhibition of resting extracellular Ca2+ flux. Increasing concentrations of BTP2 caused a shift from inducing accumulation of Ca2+ in the t-system due to Orai1 blocking to reducing the resting [Ca2+] in the sealed t-system. This effect was not observed in the absence of functional ryanodine receptors (RYRs), suggesting that higher concentrations of BTP2 impair RYR function. Additionally, we found that BTP2 impaired action potential-induced Ca2+ release from the sarcoplasmic reticulum during repetitive stimulation without compromising the fiber Ca2+ content. BTP2 was found to have an effect on RYR-mediated Ca2+ release, suggesting that RYR is the point of BTP2-induced inhibition during cycles of EC coupling. The effects of BTP2 on the RYR Ca2+ leak and release were abolished by pre-exposure to saponin, indicating that the effects of BTP2 on the RYR are not direct and require a functional t-system. Our results demonstrate the presence of a SOCE channels-mediated basal Ca2+ influx in healthy muscle fibers and indicate that BTP2 has multiple effects on Ca2+ handling, including indirect effects on the activity of the RYR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。