MSlocPRED: deep transfer learning-based identification of multi-label mRNA subcellular localization.

阅读:11
作者:Zuo Yun, Zhang Bangyi, He Wenying, Bi Yue, Liu Xiangrong, Zeng Xiangxiang, Deng Zhaohong
Subcellular localization of messenger ribonucleic acid (mRNA) is a universal mechanism for precise and efficient control of the translation process. Although many computational methods have been constructed by researchers for predicting mRNA subcellular localization, very few of these computational methods have been designed to predict subcellular localization with multiple localization annotations, and their generalization performance could be improved. In this study, the prediction model MSlocPRED was constructed to identify multi-label mRNA subcellular localization. First, the preprocessed Dataset 1 and Dataset 2 are transformed into the form of images. The proposed MDNDO-SMDU resampling technique is then used to balance the number of samples in each category in the training dataset. Finally, deep transfer learning was used to construct the predictive model MSlocPRED to identify subcellular localization for 16 classes (Dataset 1) and 18 classes (Dataset 2). The results of comparative tests of different resampling techniques show that the resampling technique proposed in this study is more effective in preprocessing for subcellular localization. The prediction results of the datasets constructed by intercepting different NC end (Both the 5' and 3' untranslated regions that flank the protein-coding sequence and influence mRNA function without encoding proteins themselves.) lengths show that for Dataset 1 and Dataset 2, the prediction performance is best when the NC end is intercepted by 35 nucleotides, respectively. The results of both independent testing and five-fold cross-validation comparisons with established prediction tools show that MSlocPRED is significantly better than established tools for identifying multi-label mRNA subcellular localization. Additionally, to understand how the MSlocPRED model works during the prediction process, SHapley Additive exPlanations was used to explain it. The predictive model and associated datasets are available on the following github: https://github.com/ZBYnb1/MSlocPRED/tree/main.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。