High cycle fatigue limit prediction of machining foreign object damaged TC17 titanium specimen based on the theory of critical distances.

阅读:4
作者:Lu Kainan, Shang Yibo, Wang Chen, Li Bin, Zhang Xiaosheng, Wang Lingfeng, Zhao Zhenhua, Zhou Liucheng, Chen Wei
Aircraft engine fans and compressor blades are inevitably subject to external damage during service. It's an important work to predict the high cycle fatigue limit of foreign object damaged blades. In this paper, machining aerofoil specimens were manufactured to simulate the foreign object damaged blade, and the high cycle fatigue limit of machining foreign object damaged TC17 titanium aerofoil specimen were tested at 3 × 10(7) cycles, and a high cycle fatigue limit prediction model of machining foreign object damaged TC17 titanium aerofoil specimen was built based on the theory of critical distances, and compared with the Peterson model. The prediction error is 9.56 ± 6.78% for theory of critical distance model and 59.76 ± 16.93% for Peterson model. The accuracy of fatigue limit prediction on notched samples using theory of critical distance model is much higher than that of Peterson model, and the theory of critical distances method model is more efficient to evaluate the fatigue strength of notched blade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。