Minocycline, an anti-infective agent of a tetracycline derivative, is reported to improve behavioral functional recovery after cerebral ischemia via enhancing the levels of brain-derived neurotrophic factor (BDNF). However, the precise mechanisms that minocycline targets to enhance the expression of BDNF are not fully defined. In the present study, we observed the neuroprotective effect and its potential mechanisms of minocycline using oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N2a cells. We found that 50 µM minocycline protected against neuronal apoptosis induced by OGD/R injury, with increased expression ratio of Bcl-2/Bax and reduced expression of caspase-3. Interestingly, minocycline resulted in the up-regulation of only BDNF protein, not BDNF mRNA in N2a cells treated with OGD/R. Furthermore, we found that minocycline inhibited OGD/R-induced up-regulation of miR-155 targeted BDNF transcripts. Moreover, miR-155 mimic could partially abolish the neuroprotective effects of minocycline via inhibiting the levels of BDNF protein. These findings suggest that minocycline is neuroprotective against ischemic brain injury through their modulation of miR-155-mediated BDNF repression.
Minocycline Promotes BDNF Expression of N2a Cells via Inhibition of miR-155-Mediated Repression After Oxygen-Glucose Deprivation and Reoxygenation.
阅读:5
作者:Lu Yunnan, Huang Zhichao, Hua Ye, Xiao Guodong
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2018 | 起止号: | 2018 Aug;38(6):1305-1313 |
| doi: | 10.1007/s10571-018-0599-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
