As one of the future's most promising clean energy sources, solar energy is the key to developing renewable energy. The randomness of solar irradiance can affect the efficiency of photovoltaic power generation, which makes photovoltaic power generation planning extremely difficult. The main goal of this study is to accurately predict solar irradiance and establish a prediction model with meteorological characteristics to improve prediction accuracy. This paper proposes a convolutional neural network (CNN) and attention mechanism-based long short-term memory network (A-LSTM) to predict solar irradiance the next day. In addition, the prediction accuracy is further improved by combining similar day analyses. A similar day prediction model is constructed by selecting solar energy data from Andhra Pradesh, India. The experimental results show that the method proposed in this paper can predict solar irradiance more accurately, providing a new idea for photovoltaic power generation planning.
Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism.
阅读:5
作者:Hou Xinxing, Ju Chao, Wang Bo
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Nov 1; 9(11):e21484 |
| doi: | 10.1016/j.heliyon.2023.e21484 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
