The growing demand for renewable energy systems is driven by climate change concerns, government support, technological advancements, economic viability, and energy security. These factors combine to create a strong momentum towards a clean and sustainable energy future. Governments, governments, and individuals are increasingly aware of the environmental impacts of traditional energy sources and adopting renewable energy solutions. Hybrid Renewable Energy Systems (HRES) are developed as an effective way of meeting the energy demands in remote locations. The complexity of the system components and the fluctuation of renewable energy sources make it difficult to design an economical and effective HRES. In this study, the Improved Aquila Optimization (IAO) approach has been suggested as a powerful tool to optimize the HRES design. The study addresses the implementation of the IAO approach in the design of HRES and emphasizes its advantages over other optimization techniques. Through extensive simulations and analyses, our findings demonstrate the superior performance of the IAO algorithm in improving the efficiency and cost-effectiveness of HRES. The optimization process using IAO resulted in a significant reduction in overall system costs, achieving an estimated Net Present Cost (NPC) of $201,973. It translates to a cost reduction of 25% compared to conventional optimization techniques. Furthermore, our analysis reveals that the IAO approach enhances the utilization of renewable energy sources, leading to a 15% increase in overall energy generation efficiency. These results highlight the effectiveness of the IAO approach in addressing the challenges associated with designing HRES. By significantly reducing costs and improving efficiency, it facilitates the adoption of sustainable energy systems in remote areas. The outcomes of this study emphasize the importance of utilizing advanced optimization techniques, such as IAO, to ensure the economic viability and environmental sustainability of HRES.
The improved aquila optimization approach for cost-effective design of hybrid renewable energy systems.
阅读:7
作者:Zhou Yin, Chen Zhimin, Gong Ziwei, Chen Ping, Razmjooy Saeid
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Mar 6; 10(6):e27281 |
| doi: | 10.1016/j.heliyon.2024.e27281 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
