Metabolic reprogramming is a defining feature of pancreatic cancer, influencing tumor progression and the tumor microenvironment. By integrating single-cell transcriptomics, spatial transcriptomics, and spatial metabolomics, this study visualized the spatial co-localization of metabolites and gene expression within tumor samples, uncovering metabolic heterogeneity and intercellular interactions. Spatial transcriptomics identified distinct pathological regions, which were further characterized using single-cell transcriptomic data and pathologist annotations. Pseudotime trajectory analysis revealed metabolic shifts along the malignant progression, while single-cell Metabolism (scMetabolism) delineated metabolic differences between pathological regions, classifying them as hypermetabolic or hypometabolic. Notably, aberrant cell communication between cancer cells, macrophages, and fibroblasts was observed, with key receptor-ligand pairs significantly co-expressed in malignant regions and correlated with poor prognosis. Spatial metabolomics imaging identified signature metabolites, highlighting metabolic alterations in amino acid metabolism, polyamine metabolism, fatty acid synthesis, and phospholipid metabolism. This integrated analysis provides critical insights into pancreatic cancer metabolism, offering potential avenues for targeted therapeutic interventions.
Integrated spatial omics of metabolic reprogramming and the tumor microenvironment in pancreatic cancer.
阅读:8
作者:Wu Hao, Zhang Qiyao, Cao Zhen, Cao Hongtao, Wu Mengwei, Fu Mengdi, Huang Tingping, Han Xianlin, Chang Xiaoyan, Liu Ziwen
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 May 15; 28(6):112681 |
| doi: | 10.1016/j.isci.2025.112681 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
