The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of â¼290,000 potential energies and â¼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ÏB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.
A benchmark dataset for Hydrogen Combustion.
阅读:4
作者:Guan Xingyi, Das Akshaya, Stein Christopher J, Heidar-Zadeh Farnaz, Bertels Luke, Liu Meili, Haghighatlari Mojtaba, Li Jie, Zhang Oufan, Hao Hongxia, Leven Itai, Head-Gordon Martin, Head-Gordon Teresa
| 期刊: | Scientific Data | 影响因子: | 6.900 |
| 时间: | 2022 | 起止号: | 2022 May 17; 9(1):215 |
| doi: | 10.1038/s41597-022-01330-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
