A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)<5ms). However, the signal was small (ÎF/F=0.4%/200mV). FP voltage sensors using the D. rerio voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal.
Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.
阅读:4
作者:Baker Bradley J, Jin Lei, Han Zhou, Cohen Lawrence B, Popovic Marko, Platisa Jelena, Pieribone Vincent
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2012 | 起止号: | 2012 Jul 15; 208(2):190-6 |
| doi: | 10.1016/j.jneumeth.2012.05.016 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
